

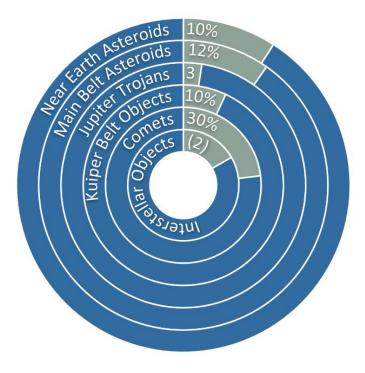
#PeloFuturoDaCiência #PeloFuturoDaAstronomia

The LineA Solar System Portal

Rodrigo Boufleur

What is the purpose of the LineA Solar System Portal?

- Universalize access to occultation prediction data, easing computational demands for both professional and amateur astronomers.
- Deliver reliable and regularly updated predictions using trusted sources such as Gaia DR3, JPL, MPC, and others, supported by a high-performance computing system.
- Make available diverse tools for querying and visualizing prediction data relevant to users' interests.
- Provide predictions covering all asteroids in the Solar System.
- Enable users to generate customized predictions by offering a secure platform for inputting private data.


THE LSST CONTEXT: A 6X LARGER SOLAR SYSTEM

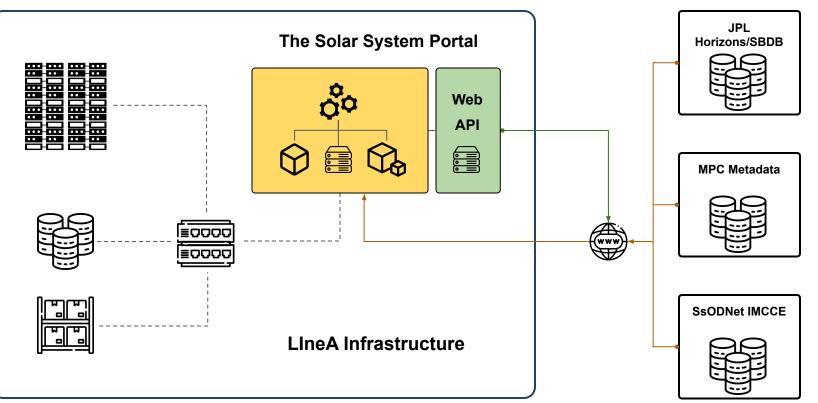
What will LSST provide?

Large amounts of small body positions, with competitive accuracy (20 - 50 mas) achieved over a decade of observations provided by the LSST.

LSST era (~ 10 million asteroids):

- Average pred/day: ~10 Million
- Average pred/year: ~3.5 Billion

LINEA SOLAR SYSTEM PORTAL



PORTAL OPERATION

NUMBERS

Computing Predictions for 1 Year

Current prediction capacity:

- □ 18K Asteroids in ~23h (19K ast/day);
- 1.35M Asteroids in ~ 70d;
- □ (the avg PC ~ 250-1000 ast/day);

Near future capacity:

- □ 1.35M Asteroids in ~7d (200K ast/day);
- □ (the avg PC would take 4 to 15 years);

- □ Number of asteroids with predictions: ~ 36,000
- □ Number of event: ~ 39.5 M
- Latest prediction: March 31, 2026
- Asteroid dynamical classes included: Centaurs,

Trojans, KBOs & NEAs

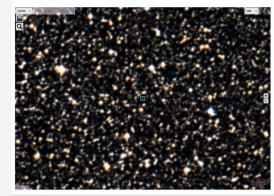
- Asteroids ephemerides: JPL/NASA
- Planetary ephemerides: de440 JPL/NASA
- Leap second kernel: NAIF0012 JPL/NASA
- Star catalog: Gaia DR3

LineA Occultation Prediction Database

This is a database of predictions for stellar occultations by small Solar System objects, calculated from the legacy positions provided by the Dark Energy Survey (DES) and the constantly updated positions from the Minor Planet Center (MPC). These predictions are regularly updated. Use our advanced filters to refine your search and find more suitable

TOTAL FORECAST	0	EVENTS TODAY	UPCOMING THIS MONTH
2088101		6599	229680
Unique Asteroids: 17287 Earliest: 2024-01-01 00:00:04 (UTC) Latest: 2025-07-02 00:02:34 (UTC)		This Week: 67067 Next Week: 54794	Next Month: 37800
Date Start 06/06/2024 08:01 PM		Date End	Mag Limit

Date Start				Mag Limit —		_
06/06/2024 08:04 PM	Date En	d	ā	15		
Filter Type		•				
🔵 Local Solar Time						
Show Events After	Show Even	ts Before				
06:00 PM	06:00 Af	М				
Hide Diurn Events						
Magnitude Drop 👻	Event Duration (s)	© Dian	neter Min (Km)	0	Diameter Max (Km)	
Geo Location 9 MY LOCA	ATION					
		Loc. R	adius (Km)			
Latitude (deg) *	Longitude (deg) *	0 100		~	SEARCH BY LOCATION	
CLEAR						HE
Search						
Q						
183 Occultation predictions found.						


DOWNLOAD MAP

occultation Prediction Circur	nstances Ø	Object	
Instant of the closest approach	Mon. 02 June 2025 01:33:51	Identification	Quaoar (50000), 2002 LM
Star position (ICRF)	RA 18 43 14.4925	Dynamic class (Skybot)	KB0>Classical>Ma
Closest approach	Dec -14 53 3.933 59.0 (mas)	Astrometric position (ICRF)	RA 18 43 14.49
Position angle	181.24 (deg)	Uncertainty in position (1o)	RA 12.7 (ma
Velocity	-21.06 (km/s)	Absolute magnitude	Dec 2.7 (ma
Geocentric distance	41.77 (AU)	Apparent magnitude	18.7
Event duration	52.7 (s)	Diameter	1110 (K
Star magnitude (Gaia)	17.961	Apparent diameter	36.6453 (mi
Magnitude drop Uncertainty in time (10)	1.2 (mag)	Semi-major axis	43.1935 (A
Uncertainty in closest approach (10)	81 (Km)	Eccentricity	0.03
Moon separation	130.7 (deg)	Inclination	7.9912 (de
Moon illuminated fraction	39.3%	Perihelion	41.5694 (A
Sun elongation	149.9 (deg)	Aphelion More information:	44.8176 (A
Creation date Tue	Dec 03 2024 20:59:49 GMT+0000	SsODNet service at IMCCE Small-Body Database Lookup NASA/JI	9

Occulted	Star

Stellar catalogue	Gaia DR3
Star astrometric position in catalogue (ICRF)	RA 280.81039156
	Dec -14.8844171
Proper motion	RA -2.17 ±0.14 (mas/yr)
	Dec -3.30 ±0.12 (mas/yr)
Source of proper motion	Gaia DR3
Uncertainty in the star position	RA 0.140 (mas)
orrectionity in the stan position	Dec 0.151 (mas)
G magnitude (source: Gala DR3)	17.951
RP magnitude (source: Gaia DR3)	17.165
BP magnitude (source: Gala DR3)	18.803

Aladin Sky Atlas

LOPD Service Portfolio

- Subscription Service;
- Dynamic and Static Maps;
- □ KMZ map overlays;
- Web interface Access;
- Web API Access;
- Python library (lineaSSP) for programmatic access;

LineA Occultation Prediction Database Overview A quick note on Stellar Occultations Gaia DR3 Update Initial Release Filter Events **Occultation Details Page** Occultation Predictions Table API Citations FAO

★ » / Overview

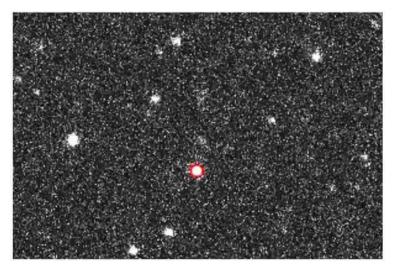
Overview

Welcome to the LIneA Occultation Prediction Database!

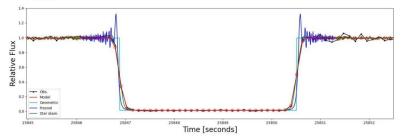
This database was developed to universalize access in an easy and interactive way to predictions of stellar occultations by small bodies of the Solar System. To do this, we constantly collect information about the orbits of these small bodies and, in combination with the Gaia stellar catalog and our software stack, compute updated predictions of stellar occultations using an HPC system. Our aim is to reduce the computational burden for amateur and professional astronomers by providing millions of stellar occultation predictions that can be easily accessed and to walk the preparation path for the Legacy Survey of Space and Time (LSST) era.

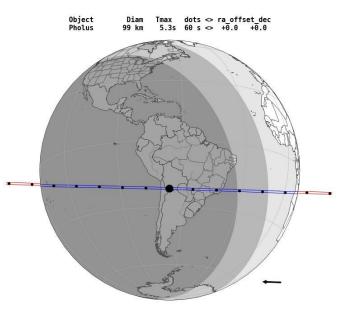
INITIAL RELEASE ADVISORY

Please be aware that this is our inaugural release, and we are currently refining our database access performance. We are eager to receive your feedback regarding any challenges or problems encountered, as it will help us improve the overall user experience.

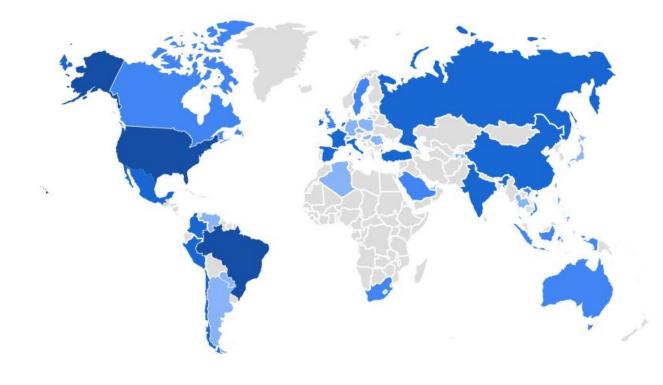

A quick note on Stellar Occultations

Stellar occultations happen when a moving object, such as an asteroid, passes in front of a star, blocking its light from view for a short time. These events can also be thought of from a different perspective, such as the object's cast shadow (with the source of light being the star) moving across the Earth's surface. People within the shadow's path with a telescope and the right conditions can register the occultation event.


From our point of view, stars are constantly obscured by bodies of the Solar System since they form, in simple terms, the background plane of the sky we observe every night. Therefore, these events are a goldmine for studying many aspects of our Solar System—especially the size, shape,



THE OCCULTATION BY PHOLUS IN MAY 19TH


year-m-d h:m:s UT ra_dec_J2000_candidate C/A P/A vel Delta G* long 2024-05-19 07:14:29.000 18 38 36.5100 -13 28 05.439 0.042 181.76 -18.73 29.26 14.8 294

Results reported by Felipe Ribas and Giuliano Margoti include:

- Computed diameter: 68 ± 2 km
- Pholus ephemeris enhanced by an order of magnitude

LIneA Occultation Prediction Database Users

- 45 countries
- 1,000+ active users
- 40,000+ accesses

THE PORTAL TEAM

DEV

INFRA/HPC

MGMT

SOLAR SYSTEM PORTAL HIGHLIGHTS

- Multiple filtering options: date and time interval, star brightness, object size, event duration, expected magnitude drop, object name or dynamical class, etc.
- Geographic filter for predictions;
- □ API access to all prediction data;
- Dynamic occultation prediction maps;
- Static prediction maps (by SORA) and KMZ files with the prediction paths;
- Detailed information on event, object and target star;
- All stars (Gaia DR3) up to mag 18 included;
- Uncertainties in Prediction Paths and Timing;
- Constantly updated up to one year in advance;
- Subscription Service;
- □ lineaSSP Python Library;

WHAT'S NEXT

Working now:

□ Predictions for the complete Solar System;

Working next:

- **Customized predictions:**
 - Reintegration of Orbit Refinement Services;
 - Reintegration of DES Legacy Data;
 - Full Integration with the MPC Mirrored Databa
 - Private User Data Integration;

Visit us at

https://solarsystem.linea.org.br

